

COURSE STRUCTURE

Master of Engineering

Data Science & Analytics

Under Choice Based Credit System (CBCS)

SR	SEMESTER	SUBJECT CODE	SUBJECT NAME	CREDIT	CATEGORY
1	Ι	FEM115401	Mathematical Foundation of Computer Science	4 (3+0+2)	Program Core
2	Ι	FEM215402 Advanced Data Structure		4 (3+0+2)	Program Core
3	Ι	FEM115501	Data Science	4 (3+0+2)	Program Core
4	Ι	-	Major Elective - I	4 (3+0+2)	Program Elective
5	Ι	FEM110001	Research Skill & Methodology	2 (1+0+2)	Research
6	Ι	FEM110002	Disaster Management	0 (2+0+0) Audit	
TOTAL					18

Major Elective I					
FEM115403	Distributed System				
FEM115406	Machine Learning				
FEM115502	Data Storage Technologies and Networks				

SR	SEMESTER	SUBJECT CODE	SUBJECT NAME	CREDIT	CATEGORY
1	II	FEM225401	Advanced Algorithm	4 (3+0+2)	Program Core
2	II	FEM125501	Data Visualization	4 (3+0+2)	Program Core
3	II	-	Major Elective – II	4 (3+0+2)	Program Elective
4	II	-	Major Elective - III	4 (3+0+2)	Program Elective
5	II	FEM125506	Mini Project with Seminar	2 (0+0+4)	Research
6	II	FEM120001	Research Paper Writing	0 (2+0+0)	Audit
			18		

Major Elective II					
FEM125404	Data Mining and Data Warehousing				
FEM125502	Big Data Analytics				
FEM125503	Recommender System				
	Major Elective III				
FEM125504	Data Security and Access Control				
FEM125505	Web Analytics and Development				
FEM125602 Data Virtualization & Security					

SR	SEMESTER	SUBJECT CODE	SUBJECT NAME CREDIT		CATEGORY
1.	III	-	Major Elective - IV	3 (2+0+2)	Program Elective
2.	III	-	Open Elective - I	3 (3+0+0)	Open Elective
3.	III	FEM135502	Internal Review - I	2 (0+0+4)	Research
4.	III	FEM135503Dissertation Phase - I8 (0+0+16)		8 (0+0+16)	Research
	16				

Major Elective IV						
FEM135402	Cloud Computing					
FEM135403	Deep Learning					
FEM135501	Knowledge Discovery					
	Open Elective I					
FEM135404	Semantic Web					
FEM135405	Business Analytics					
FEM135406	Operation Research					

SR	SEMESTER	SUBJECT CODE	SUBJECT NAME CREDIT		CATEGORY
1	IV	FEM145501	Internal Review - II	2 (0+0+4)	Research
2	IV	FEM145502	Dissertation Phase- II	14 (0+0+28)	Research
	16				

FEM115401: MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Objective: The course intends to provide mathematical foundations to graduate students. The course should enhance their ability to develop mathematical models and solve problems using analytical and numerical methods.

Credit	: 4 Semesters I	L-T-P: 3-0-		
Sr.	Content	Total Hrs	% Weightage	
1	Probability mass, density, and cumulative distribution functions, Parametric families of distributions, Expected value, variance, conditional expectation, Applications of the univariate and multivariate Central Limit Theorem, Probabilistic inequalities, Markov chains	7	15%	
2	Random samples, sampling distributions of estimators, Methods of Moments and Maximum Likelihood	7	15%	
3	Statistical inference, Introduction to multivariate statistical models: regression and classification problems, principal components analysis, The problem of overfitting model assessment	8	16%	
4	Graph Theory: Isomorphism, Planar graphs, graph colouring, hamilton circuits and euler cycles. Permutations and Combinations with and without repetition. Specialized techniques to solve combinatorial enumeration problems	11	23%	
5	Computer science and engineering applications: Data mining, Network protocols, analysis of Web traffic, Computer security, Software engineering, Computer architecture, operating systems, distributed systems, Bioinformatics, Machine learning	10	21%	
6	Recent Trands in various distribution functions in mathmatical field of computer science for varying fields like bioinformatic, soft computing, and computer vision	6	13%	

References Books: -

1. John Vince, Foundation Mathematics for Computer Science, Springer

- 2. K. Trivedi.Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Wiley.
- 3. M. Mitzenmacher and E. Upfal.Probability and Computing: Randomized Algorithms and Probabilistic Analysis
- 4. Alan Tucker, Applied Combinatorics, Wiley

After completion of the course, the students will be able to:

CO-1: To understand the mathematical fundamentals that is prerequisites for a variety of courses like Data mining, Network protocols, analysis of Web traffic, Computer security, Software engineering, Computer architecture, operating systems, distributed systems, Bioinformatics, Machine learning

CO-2: To develop the understanding of the mathematical and logical basis to many modern techniques in information technology like machine learning, programming language design, and concurrency

CO-3: To study various sampling and classification problems.

CO-4: Students will learn fundamentals and applications of graph theory for engineering problems.

CO-5: Carry out interpolations and curve fitting

Course	Expected Mapping with Programme Outcomes urse (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)											
Outcomes	utcomes PO-								PO-			
	1	2	3	4	5	6	7	8	9	10	11	12
CO-1	3	2	2	2	3	2	2	-	-	2	2	2
CO-2	3	2	-	-	3	1	2	-	-	-	1	1
CO-3	3	2	2	2	2	2	2	-	-	2	-	-
CO-4	3	2	2	2	2	2	-	-	-	2	-	-
CO-5	3	2	-	1	1	2	3	-	-	-	2	-
CO-6	3	2	2	-	-	1	1	-	-	3	2	2

Hansaba College of Engineering & Technology

FEM215402: ADVANCED DATA STRUCTURE

Objective: The student should be able to choose appropriate data structures, understand the ADT/libraries, and use it to design algorithms for a specific problem. Students should be able to understand the necessary mathematical abstraction to solve problems. To familiarize students with advanced paradigms and data structure used to solve algorithmic problems. Student should be able to come up with analysis of efficiency and proofs of correctness.

Credit: 4

L-T-P: 3-0-2

Sr.	Content	Total Hrs	% Weightage
1	 Dictionaries: Definition, Dictionary Abstract Data Type, Implementation of Dictionaries. Hashing: Review of Hashing, Hash Function, Collision Resolution Techniques in Hashing, Separate Chaining, Open Addressing, Linear Probing, Quadratic Probing, Double Hashing, Rehashing, Extendible Hashing. 	07	15%
2	Skip Lists: Need for Randomizing Data Structures and Algorithms, Search and Update Operations on Skip Lists, Probabilistic Analysis of Skip Lists, Deterministic Skip Lists	05	10%
3	Trees: Binary Search Trees, AVL Trees, Red Black Trees, 2-3 Trees, B-Trees, Splay Trees	09	15%
4	Text Processing: Sting Operations, Brute-Force Pattern Matching, The BoyerMoore Algorithm, The Knuth-Morris-Pratt Algorithm, Standard Tries, Compressed Tries, Suffix Tries, The Huffman Coding Algorithm, The Longest Common Subsequence Problem (LCS), Applying Dynamic	12	25%

Hansaba College of Engineering & Technology

	(Gujarat Private State Univers	ity Act 4 of 201	8)
	Programming to the LCS Problem.		
	Computational Geometry:		
	Constructing a Priority Search Tree Searching a Priority Search Tree		
	Constituting a Fhority Search free, Searching a Fhority Search free,		
5	Priority Range Trees, Quadtrees, k-D Trees.	15	35%
	Recent Trends in Hashing		
	Trees, and various computational geometry methods for efficiently solving the new evolving problem		

Reference Books:

- 1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 2nd Edition, Pearson, 2004. 2.
- 2. M T Goodrich, Roberto Tamassia, Algorithm Design, John Wiley, 2002.

After completion of the course, the students will be able to:

CO-1: Understand the implementation of symbol table using hashing techniques.

CO-2: Develop and analyze algorithms for red-black trees, B-trees and Splay trees.

CO-3: Develop algorithms for text processing applications.

CO-4: Identify suitable data structures and develop algorithms for computational geometry problems.

CO-5: Basic ability to analyze algorithms and to determine algorithm correctness and time efficiency class.

CO-6: Ability to apply and implement learned algorithm design techniques and data structures to solve problems.

Course Outcomes		Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)											
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	
CO-1	3	2	2	2	3	-	-	1	2	2	1	1	
CO-2	3	1	3	2	2	-	-	1	2	2	2	2	
CO-3	3	3	2	2	1	-	-	1	3	2	1	2	
CO-4	3	2	3	1	2	-	-	-	3	2	2	-	

Hansaba College of Engineering & Technology

Approved By Govt. of Gujarat (Recognized by UGC under Section (Gujarat Private State University A										ujarat der Section 22 Iniversity Act 4	& 2(f) of 1956) of 2018)	
CO-5	3	2	2	2	2	-	-	2	3	2	1	2
CO-6	2	2	2	2	2	-	-	1	2	2	1	1

FEM115404: DATA SCIENCE

Objective: Provide you with the knowledge and expertise to become a proficient data scientist. Demonstrate an understanding of statistics and machine learning concepts that are vital for data science; Produce Python code to statistically analysis a dataset; Critically evaluate data visualizations based on their design and use for communicating stories from data.

L-T-P: 3-0-2

Sr.	Content	Total	%
		Hrs	Weightage
1	Introduction to core concepts and technologies: Introduction, Terminology, data science process, data science toolkit, Types of data, Example applications.	06	10%
2	Data collection and management: Introduction, Sources of data, Data collection and APIs, Exploring and fixing data, Data storage and management, Using multiple data sources	07	15%
3	Data analysis: Introduction, Terminology and concepts, Introduction to statistics, Central tendencies and distributions, Variance, Distribution properties and arithmetic, Samples/CLT, Basic machine learning algorithms, Linear regression, SVM, Naive Bayes.	10	30%
4	Data visualization: Introduction, Types of data visualization, Data for visualization: Data types, Data encodings, Retinal variables, Mapping variables to encodings, Visual encodings.	11	20%
5	Applications of Data Science:Technologies for visualisation, Bokeh (Python)	07	10%
6	Recent trends in various data collection and analysis techniques: various visualization techniques, application development methods of	07	15%
	Frankto of Franktonenium	GLOB	AL UNID

used in data science.

Reference Books:

1. Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The Frontline. O'Reilly.

Approved By Govt, of Guiarat

(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

2. Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Massive Datasets. v2.1, Cambridge University Press.

Course Outcome:

After learning the course the students should be able to:

- 1. Explain how data is collected, managed and stored for data science;
- 2. Understand the key concepts in data science, including their real-world applications and the toolkit used by data scientists;
- 3. Implement data collection and management scripts using MongoDB.

After completion of the course, the students will be able to:

- **CO-1:** Explain how data is collected, managed and stored for data science;
- **CO-2:** Understand the key concepts in data science, including their real-world applications and the toolkit used by data scientists;
- CO-3: Implement data collection and management scripts using MongoDB.
- **CO-4:** Dive deeply into a chosen area of practice to fully prepare to use knowledge gained in the program to add significant value in a professional setting
- **CO-5:** Be able to utilize knowledge and skills to continue learning and adapting to new data science technologies
- **CO-6:** Apply data science concepts and methods to **solve** problems in real-world contexts and will **communicate** these solutions effectively.

Course Outcomes Expected Mapping with Programme Outcomes

Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956)

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	2	2	2	-	-	-	1	1	2	-	-
CO-2	3	3	3	2	-	-	-	1	1	2	-	1
CO-3	2	3	3	3	3	-	-	1	1	2	-	1
CO-4	2	3	2	2	-	-	-	1	1	2	-	-
CO-5	2	3	2	3	-	-	-	1	1	2	-	-
CO-6	2	2	3	2	-	-	-	1	1	2	-	1

(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

FEM115406: MACHINE LEARNING

Objective: Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. This subject will help students to learn patterns and concepts from data without being explicitly programmed in various IOT nodes and also motivates them to design and analyses various machine learning algorithms and techniques with a modern outlook focusing on recent advances.

Credit: 4

L-T-P: 3-0-2

Sr.	Content	Total Hrs	% Weightage
1.	Introduction Learning Problems, designing a learning system, Issues with machine learning. Concept Learning, Version Spaces and Candidate Eliminations, Inductive bias	07	11%
2.	Supervised and Unsupervised learning Decision Tree Representation, Appropriate problems for Decision tree learning, Algorithm, Hypothesis space search in Decision tree learning, inductive bias in Decision tree learning, Issues in Decision tree learning K- Nearest Neighbor Learning Locally Weighted Regression, Radial Bases, Functions, Case Based Reasoning	11	25%
3.	Artificial Neural networks and genetic algorithms Neural Network Representation, Appropriate problems for Neural Network Learning, Perceptions, Multilayer Networks and Back Propagation Algorithms, Remarks on Back Propagation Algorithms Case Study: face Recognition	11	25%
4.	Bayesian Learning Bayes Theorem, Bayes Theorem and Concept Learning, Maximum Likelihood and Least squared Error Hypothesis, Maximum likelihood hypothesis for Predicting probabilities, Minimum Description Length Principle, Bayes Optimal Classifier, Gibbs Algorithm, Naïve Bayes Classifier, Bayesian Belief Network, EM Algorithm Case Study: Learning to classify text,	11	25%
5.	Overview of typical application areas, such as Recommender System, etc	10	14%

Hansaba College of Engineering & Technology

Reference Book

- 1. Henrik Brink, Joseph Richards, Mark Fetherolf, "Real-World Machine Learning", DreamTech
- 2. Christopher Bishop, "Pattern Recognition and Machine Learning"
- 3. Hastie, Tibshirani, and Friedman, "Elements of Statistical Learning". Springer.
- 4. Jiawei Han and Michelline Kamber, "Data Mining: Tools and Techniques", 3rd Edition
- 5. I H Witten, Eibe Frank, Mark A Hall, "Data Mining: A practical Machine Learning Tools and techniques", Elsevier
- 6. Couresera.org: Machine Learning by Andrew Ng, Stanford University
- 7. Machine Learning: A Probabilistic Perspective, Kevin Murphy, MIT Press, 2012.
- 8. Machine Learning for Big Data, Jason Bell, Wiley
- 9. Machine Learning in Python, Michael Bowles, Wiley

Text Book:

- 1. Tom M Mitchell, "Machine Learning", McGraw Hill
- 2. Peter Harrington, "Machine Learning in Action", DreamTech

After completion of the course, the students will be able to:

- CO-1: Learn the basics of learning problems with hypothesis and version spaces
- CO-2: Understand the features of machine learning to apply on real world problems
- **CO-3:** Characterize the machine learning algorithms as supervised learning and unsupervised learning and Apply and analyze various algorithms of supervised and unsupervised learning.
- **CO-4:** Analyze the concept of neural networks for learning linear and non-linear activation functions.
- **CO-5:** Learn the concepts in Bayesian analysis from probability models and methods.
- **CO-6:** Understand the fundamental concepts of Genetic Algorithm and Analyze and design the genetic algorithms for optimization engineering problems.

Course Outcomes	Expected Mapping with Programme Outcomes													
		(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)												
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12		
CO-1	3	2	1	-	3	1	-	-	-	-	2	1		
CO-2	2	-	2	-	3	-	-	2	-	2	-	-		

Hansaba College of Engineering & Technology

Approved By Govt. of Gujarat (Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018) CO-3 3 2 1 1 -1 2 -----2 2 2 CO-4 1 1 2 1 1 ---_ CO-5 3 1 1 2 -_ 1 _ _ _ _ _ 2 CO-6 2 2 -2 1 2 1 ----

FEM110001: RESEARCH SKILL & METHODOLOGY

Objective: The students should get familiar with the Research Skill and its Methodology.

Credit: 2

L-T-P: 0-1-2

Sr.	Content	Total	%
		Hrs	Weightage
1	Introduction to Research: Nature and Scope of Research, Information Based Decision Making and Source of Knowledge. The Research Process, Basic approaches and Terminologies used in Research, Defining Research Problem and Framing Hypothesis, Preparing a Research Plan	6	12%
2	Defining the Research Problem and Research Design What is a Research Problem?, Selecting the Problem, Necessity of Defining the Problem, Meaning of Research Design, Need for Research Design, Future of a Good Design, Important Concepts Relating to Research Design, Different Research Design, Basic Principals of Experimental Designs	7	19%
3	Sampling Design Census and sample survey, Implications of a Sample Design, Steps in sampling Design, Criteria of Selecting a Sampling Procedure, Characteristics of a Good Sample Design, Different Types of sample Designs, How to Select a Random Sample?, Random Sample from an Infinite Universe, Complex Random Sampling Designs	7	18%
4	Methods of Data Collection Collection of Primary Data, Observation Method, Interview Method, Collection of Data through Questionnaires, Collection of Data through Schedules, Difference between Questionnaires and Schedules, Some Other Methods of Data Collection, Collection of Secondary Data, Selection of Appropriate Method for Data Collection	7	16%
5	Data Analysis Data Analysis and Presentation Editing and coding of data, tabulation, graphic presentation of data, cross tabulation, Testing of hypotheses; Parametric and nonparametric tests for Uni variant and	7	12%

Hansaba College of Engineering & Technology

	Bi variant data. Tests of association; simple linear regression and other non-parametric tests, Sampling techniques, Probability, Probability Distributions, Hypothesis Testing, Level of Significance and Confidence Interval t test. ANOVA Correlation Regression		
	Analysis		
6	Interpretation of Data and Paper Writing Layout of a Research Paper, Journals in Computer Science, Impact factor of Journals, When and where to publish? Ethical issues related to publishing, Plagiarism and Self-Plagiarism, Use of Encyclopedias, Research Guides, Handbook etc., Academic Databases for Computer Science Discipline.	4	10%
7	Report WritingSignificance of Report Writing, Deferent Steps in Writing Report.Layout of the Research Report, Types of Report, Oral Presentation,Mechanics of Writing a Research Report, Precautions for Writing aResearch ReportPatent RightsScope of Patent Rights. Licensing and transfer of technology. Patentinformation and databases. Geographical Indications	4	13%

Reference Books:

- 1. Research Methodology Methods and Techniques by C. R. Kothari, New Age International Publishers.
- 2. Research Methodology by D. K. Bhattacharyya, Excel Books Publications.
- 3. Research Methodology: A Guide for Researchers in Management and Social Sciences by Taylor, Sinha & Ghoshal, PHI Publications

After completion of the course, the students will be able to:

- **CO-1:** Conduct a quality literature review and find the research gap.
- **CO-2:** Identify an original and relevant problem and identify methods to find its solution.
- **CO-3:** Validate the model.

CO-4: Present and defend the solution obtained in an effective manner in written or spoken form.

CO-5: Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.

CO-6: Analyze research related information.

Course Outcomes	Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)												
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12	
CO-1	3	3	2	2	3	-	-	1	2	3	1	2	
CO-2	3	3	2	2	3	-	-	1	3	2	2	1	
CO-3	2	3	3	2	1	-	-	1	2	2	1	2	
CO-4	3	2	2	1	2	-	-	-	2	3	2	-	
CO-5	3	2	2	2	2	-	-	2	2	2	1	1	
CO-6	1	2	2	2	3	-	-	1	3	2	2	1	

FEM110002: DISASTER MANAGEMENT

Objective: The students should get familiar with the Disaster and its challenges.

Credit: 2

L-T-P: 2-0-0

Sr	Content	Total	%
51	Content	Hrs	Weightage
1.	Introduction: Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.	4	17
2.	Repercussions Of Disasters And Hazards : Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts	4	17
3.	Disaster Prone Areas In India: Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics	4	17
4.	Disaster Preparedness And Management: Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness	4	17
5.	Risk Assessment: Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.	4	16
6.	Disaster Mitigation: Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.	4	16

References Books :

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies" New Royal book Company
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice

(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

Hall Of India, New Delhi.

3. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi.

Course Outcomes :

After completion of the course, the students will be able to:

CO-1: Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.

CO-2: Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.

CO-3: Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations..

CO-4: Critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in.

CO-5: Understand impact of Disasters and realization of societal responsibilities.

CO-6: Apply Disaster management principles.

C				Expe	ected Ma	pping w	ith Progr	amme O	utcomes	5		
Course			(1- W	'eak Corr	elation; 2	2- Mediu	m correla	ntion; 3- :	Strong Co	orrelation)		
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	2	2	2	3	-	-	1	2	2	1	1
CO-2	3	2	2	1	2	-	-	1	3	2	2	1
CO-3	3	3	1	2	1	-	-	1	2	2	2	2
CO-4	3	3	3	2	2	-	-	-	2	3	2	-
CO-5	3	2	3	2	3	-	-	2	3	2	2	2
CO-6	1	3	2	2	2	-	-	1	3	3	1	2

FEM225401: ADVANCED ALGORITHM

Objective: Data structure and algorithm (primitive, nonprimitive, linear data structure (stack, queue, linked list, nonlinear data structure (tree,graph), hashing, File structure) Rationale: Obtaining efficient algorithms is very important in modern computer engineering as the world wants applications to be time and space and energy efficient. This course enables to understand and analyze efficient algorithms for various applications.

Credit:	: 4 Semester II		L-T-P: 3-0-2
Sr.	Content	Total Hrs	% Weightage
1	From problems to programs, set theory, functions and relations Insertion sort, analyzing algorithms, designing algorithms, asymptotic notation. Divide and conquer, Strassen's algorithm for matrix multiplication, The substitution method for solving recurrences, The recursion tree method for solving recurrences, master method	9	20%
2	Dynamic programming, Making Change, The principal of optimality, the knapsack problem, Floyd's algorithm for shortest Paths Greedy Algorithms, making change, Knapsack problem, Shortest	9	20%
3	Amortized analysis- aggregate analysis, accounting method, potential method Single source shortest paths. Bellman Ford, directed acyclic graphs, Floyd Warshall algorithm	9	20%
4	Number theoretic algorithms, Greatest common dividor, Modular Arithmetic String matching, the naïve string matching, Rabin Karp algorithm, Boyer Moore pattern matching, Knuth Moriss Pratt algorithm	12	20%
5	Introduction to NP completeness, The class P and NP, polynomial reductions, NP complete problems Heuristic algorithm – the travelling salesperson, approximate algorithms-knapsack problem	10	20%

Hansaba College of Engineering & Technology

(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

Reference Books:

- 1. Introduction to Algorithms. Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein. PHI publication
- 2. Fundamentals of Algorithms. Gilles Brassard, Paul Bratley. PHI publication
- 3. Advanced data structure. Peter Brass. Cambridge University Press.
- 4. Data structures and Algorithms, Allfred Aho, Jeffrey Ullman, John Hopcroft. Pearson Education.
- 5. Data Structures and Algorithms by G.A.V. Pai, 2009, TMH.
- 6. Fundamentals of Computer Algorithms by Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, 2nd edition, University Press.
- 7. Classic Data Structures by D. Samanta, 2005, PHI
- 8. Design and Analysis of Computer Algorithms by Aho, Hopcraft, Ullman 1998, PEA.
- 9. Introduction to the Design and Analysis of Algorithms by Goodman, Hedetniemi, TMG.
- 10. Design and Analysis of Algorithms by E. Horowitz, S. Sahani, 3rd Edition, Galgotia.
- 11. Data Structures and Algorithms in C++ by Drozdek 2nd Edition, Thomson

Course Outcome:

After learning the course the students should be able to:

- CO1: Formulate and analyse the algorithms and respective complexities
- CO2 : Demonstrate a familiarity with major algorithms and data structures..
- CO3 : Analyse and Implement the examples of different types of problems..
- CO4 : Categorization of problems on the basis of implementation..
- CO5: Synthesize efficient algorithms in common engineering design situations..
- CO6 : Redefine the existing algorithm to improve the efficiency.

CO-1	3	3	2	3	-	-	-	-	-	-	-	-
CO-2	3	2	2	2	-	-	-	-	-	-	-	-
CO-3	3	3	2	2	-	-	-	-	-	-	-	-
CO-4	3	3	2	3	-	-	-	-	-	-	-	-
CO-5	3	3	2	3	-	-	-	-	-	-	-	-
CO-6	3	3	3	3	-	-	-	-	-	-	-	-

(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

FEM125501: DATA VISUALISATION

Objective: Familiarize students with the basic and advanced techniques of information visualization and scientific visualization, to learn key techniques of the visualization process.

Credit: 4

L-T-P: 3-0-2

Sr.	Content	Total Hrs	% Weightage
1	Introduction of visual perception, visual representation of data, Gestalt principles, information overloads.	08	20%
2	Creating visual representations, visualization reference model, visual mapping, visual analytics, Design of visualization applications.	08	20%
3	Classification of visualization systems, Interaction and visualization techniques misleading, Visualization of one, two and multi- dimensional data, text and text documents.	10	20%
4	Visualization of groups, trees, graphs, clusters, networks, software, Metaphorical visualization	11	15%
5	Visualization of volumetric data, vector fields, processes and simulations, Visualization of maps, geographic information, GIS systems, collaborative visualizations, Evaluating visualizations	07	15%
6	Recent trends in various perception techniques, various visualization techniques, data structures used in data visualization.	04	10%

Reference Books:

- 1. WARD, GRINSTEIN, KEIM, Interactive Data Visualization: Foundations, Techniques, and Applications. Natick : A K Peters, Ltd.
- 2. E. Tufte, The Visual Display of Quantitative Information, Graphics Press

Course Outcome:

After learning the course the students should be able to:

- CO1: Comprehend the importance of the exploratory data analysis paradigm
- CO2 : Understand basic concepts of data visualization
- CO3 : Select appropriate data visualization technique for given data
- CO4 : Design visualizations for presenting stories from data

Course Outcomes		Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)													
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12			
CO-1	-	-	1	-	1	-	-	-	-	-	-	-			
CO-2	1	-	1	-	1	-	1	-	-	-	-	-			
CO-3	1	3	1	3	-	-	3	-	-	-	-	-			
CO-4	3	3	3	3	3	1	2	-	-	-	-	-			
CO-5	-	-	-	-	-	-	-	-	-	-	-	-			
CO-6	-	-	-	-	-	-	-	-	-	-	-	-			

FEM125404: DATA MINING AND DATA WAREHOUSING

Objective: The students should get familiar with the Data Mining Concept and Data Warehousing Concept.

Credit: 4

L-T-P: 3-0-2

Sr.	Content	Total Hrs	% Weightage
1	Introduction to Data Mining Importance of Data Mining, Data Mining Functionalities, Classification of Data mining systems, Data mining Architecture, Major Issues in Data Mining, Applications of Data Mining, Social impacts of data mining.	08	20%
2	Data Pre-processing & Data Mining primitives Data Pre-processing, Data cleaning, Data Integration and Transformation, Data reduction, Discretization and Concept Hierarchy Generation. Data Mining primitives, Languages and System Architectures, Concept Description: characterization and Comparison, Analytical Characterization, Mining Class Comparison.	12	20%
3	Association Rules & Mining Association Rule Mining, Mining of Single dimensional Boolean association rules, Multilevel association rules and Multidimensional association rules, Correlation analysis, Constraint based association Mining.	06	10%
4	Classification and Predication: Basic issues regarding classification and predication, Classification by Decision Tree, Bayesian classification, classification by back propagation, Associative classification, Prediction, Classifier accuracy.	08	20%

Hansaba College of Engineering & Technology

	(Gujarat Private State	University Ac	t 4 of 2018)
5	Cluster Analysis Cluster Analysis, basic issues, clustering using partitioning methods, Hierarchical methods, Density based methods, Grid based methods and model based methods, Algorithms for outlier analysis.	06	15%
6	Mining complex Types of data: Multidimensional analysis and descriptive mining of complex data objects, Introduction to spatial mining, multimedia mining, temporal mining, text mining and web mining with related algorithms.	10	15%

Reference Books:

- 1. Data Mining concepts and Techniques by Jiawei Han, Micheline Kamber Elsevier.
- 2. Data Mining by Arun K. Pujari University Press.
- 3. Mordern Data Warehousing, Data Mining and Visualization by George M.Marakas Pearson.
- 4. Data Mining by Vikram Puri And P.RadhaKrishana –Oxfrod Press.
- 5. Data Warehousing by Reema Theraja –Oxford Press

Course Outcome:

After learning the course the students should be able to:

- CO1: Understand the data Warehouses, Operational Data Stores (ODS) and OLAP characteristics..
- CO2 : Understand the data mining concept, application and their usag.
- CO3 : Analyze the frequent patterns using association analysis algorithms like apriori, FP-growth etc..
- CO4 : Understand the concept of classification, different classification algorithms and their applications.
- CO5: Understand the concept of clustering and different cluster analysis methods.

	r i i i i i i i i i i i i i i i i i i i			F	at al Ma		th Date of	(oujurut i i			01 2010)				
Course				Ехре	ected Ma	ipping w	un Prog	ramme	Jutcome	s					
Course		(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)													
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12			
CO-1	3	-	-	-	-	-	-	-	-	-	-	2			
CO-2	2	-	-	-	-	-	-	-	-	-	-	3			
CO-3	2	3	-	-	-	-	-	-	-	-	-	2			
CO-4	2	2	-	-	-	-	-	-	-	-	-	3			
CO-5	2	3	-	-	-	-	-	-	-	-	-	2			
CO-6	-	-	-	-	-	-	-	-	-	-	-	-			

FEM125505: WEB ANALYTICS AND DEVELOPMENT

Objective: The course explores use of social network analysis to understand growing connectivity and complexity in the world ranging from small groups to WWW.

Credit: 4

L-T-P: 3-0-2

Sr.	Content	Total Hrs	% Weightage
1	Introduction – Social network and Web data and methods, Graph and Matrices, Basic measures for individuals and networks, Information Visualization	10	20%
2	Web Analytics tools: Click Stream Analysis, A/B testing, Online Surveys	08	15%
3	Web Search and Retrieval: Search Engine Optimization, Web Crawling and indexing, Ranking Algorithms, Web traffic models	09	20%
4	Making Connection: Link Analysis, Random Graphs and Network evolution, Social Connects: Affiliation and identity	12	25%
5	Connection: Connection Search, Collapse, Robustness Social involvements and diffusion of innovation	09	20%

Reference Books:

- 1. Hansen, Derek, Ben Sheiderman, Marc Smith. 2011. Analyzing Social Media Networks with NodeXL: Insights from a Connected World. Morgan Kaufmann, 304. 2.
- 2. Avinash Kaushik. 2009. Web Analytics 2.0: The Art of Online Accountability. 3.
- 3. Easley, D. & Kleinberg, J. (2010). Networks, Crowds, and Markets: Reasoning About a Highly Connected World. New York: Cambridge University Press. http://www.cs.cornell.edu/home/kleinber/networks-book/ 4.
- 4. Wasserman, S. & Faust, K. (1994). Social network analysis: Methods and applications. New York: Cambridge University Press. Monge, P. R. & Contractor, N. S. (2003). Theories of communication networks. New York: Oxford University Press.

Course Outcome:

After learning the course the students should be able to:

Hansaba College of Engineering & Technology

- CO1: Implement numerical and statistical analysis on various data sources
- CO2 : Apply data preprocessing and dimensionality reduction methods on raw data.
- CO3 : Implement linear regression technique on numeric data for prediction.
- CO4 : Execute clustering and association rule mining algorithms on different datasets
- C05 : Implement and evaluate the performance of KNN algorithm on different datasets.

Course Outcomes		Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)													
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12			
CO-1	3	3	3	3	3	3	-	-	-	-	2	3			
CO-2	3	3	3	3	3	3	-	-	-	-	3	3			
CO-3	3	3	3	3	3	3	-	-	-	-	3	3			
CO-4	3	3	3	3	3	3	-	-	-	-	3	3			
CO-5	3	3	3	3	3	3	-	-	-	-	1	3			
CO-6	-	-	-	-	-	-	-	-	-	-	-	-			

FEM125506: MINI PROJECT WITH SEMINAR

Objective: Research

Credit: 2

L-T-P: 0-0-4

Content

A mini project requires comparatively less time than major projects. They are comparatively simpler and have shorter duration. Mini Project helps students to explore and strengthen the understanding of fundamentals through practical application of theoretical concepts. Mini Project can help them to boost their skills and widen their horizon of thinking. It will act like beginners guide to undertake the major project/dissertation during the final year and will ensure preparedness of students to undertake major projects/dissertation. Students will be required to select the topic relevant to their specialization and that has value addition. Students will get an opportunity to work in actual industrial environment if they opt for internship. Based on the selected topic student will also prepare seminar report based on the literature survey Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available. End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution. Continuous assessment of Mini Project at Mid Sem and End Sem will be monitored by the departmental committee.

Course Outcome:

After learning the course the students should be able to:

- CO1: Demonstrate a sound technical knowledge of their selected mini project topic.
- CO2 : Undertake problem identification, formulation and solution..
- CO3 : Design engineering solutions to complex problems utilising a systems approach.
- CO4 : Communicate with engineers and the community at large.
- CO5: Demonstrate the knowledge, skills and attitudes of a professional engineer.

								(eajarat i	Trate otate	entrerenty riet	4 01 2010)				
Course				Expec	eted Maj	pping w	ith Prog	ramme	Outcom	es					
Outcomes		(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)													
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12			
CO-1	3	1	-	-	-	-	-	-	-	-	-	-			
CO-2	3	1	-	-	-	-	-	-	-	-	-	-			
CO-3	3	1	-	-	-	-	-	-	-	-	-	-			
CO-4	3	1	-	-	-	-	-	-	-	-	-	-			
CO-5	3	1	-	-	-	-	-	-	-	-	-	-			
CO-6	-	-	-	-	-	-	-	-	-	-	-	-			

FEM120001: RESEARCH PAPER WRITING

Objective: The students should get familiar with the Research Paper Writing.

Credit: 0

L-T-P: 2-0-0

Sr.	Content	Total Hrs	% Weightage
1.	Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness	4	17
2.	Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction	4	17
3.	Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check	4	17
4.	Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature	4	17
5.	Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions	4	16
6	Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission	4	16

Reference Books:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

FEM135402: CLOUD COMPUTING

Objective: Fundamental for Cloud Computing this course concentrates on delivering the necessary concepts and features.

Credi	t: 3 Semester III		L-T-P: 2-0-2
Sr.	Content	Total Hrs	% Weightage
1	Introduction to Cloud Computing Overview, Roots of Cloud Computing, Layers and Types of Cloud, Desired Features of a Cloud, Benefits and Disadvantages of Cloud Computing, Cloud Infrastructure Management, Infrastructure as a Service Providers, Platform as a Service Providers, Challenges and Risks	06	10%
2	Cloud Architecture, Services and Applications Exploring the Cloud Computing Stack, Connecting to the Cloud, Infrastructure as a Service, Platform as a Service, Saas Vs. Paas, Using PaaS Application Frameworks, Software as a Service Cloud Deployment Models, Public vs Private Cloud, Cloud Solutions, Cloud ecosystem, Service management, Computing on demand, Identity as a Service, Compliance as a Service	08	15
3	Abstraction and Virtualization Introduction to Virtualization Technologies, Load Balancing and Virtualization, Understanding Hyper visors, Understanding Machine Imaging, Porting Applications, Virtual Machines Provisioning and Manageability Virtual Machine Migration Services, Virtual Machine Provisioning and Migration in Action, Provisioning in the Cloud Context, Virtualization of CPU, Memory , I/O Devices, Virtual Clusters and Resource management, Virtualization for Data Center Automation	08	15
4	Cloud Infrastructure and Cloud Resource Management	06	20

Hansaba College of Engineering & Technology

	(Gujarat Private State	University Act	4 01 2018)
	Architectural Design of Compute and Storage Clouds, Layered Cloud Architecture Development, Design Challenges, Inter Cloud Resource Management, Resource Provisioning and Platform Deployment, Global Exchange of Cloud Resources. Administrating the Clouds, Cloud Management Products, Emerging Cloud Management Standards,		
5	Cloud Security Security Overview, Cloud Security Challenges and Risks, Software-as-a Service Security, Cloud computing security architecture: Architectural Considerations, General Issues Securing the Cloud, Securing Data, Data Security, Application Security, Virtual Machine Security, Identity and Presence, Identity Management and Access Control, Autonomic Security Establishing Trusted Cloud computing, Secure Execution Environments and Communications, , Identity Management and Access control Identity management, Access control, Autonomic Security Storage Area Networks, Disaster Recovery in Clouds	08	20
6	Cloud Based Case-Studies Overview of Cloud services, Designing Solutions for the Cloud, Implement & Integrate Solutions, Emerging Markets and the Cloud, Tools for Building Private Cloud: IaaS using Eucalyptus, PaaS on IaaS - AppScale	04	20

Reference Books:

- 1. Rajkumar Buyya et. el., Cloud Computing: Principles and Paradigms, Wiley India Edition
- 2. Sosinsky B., "Cloud Computing Bible", Wiley India

3. Mastering Cloud Computing by Rajkumar Buyya, C. Vecchiola & S. Thamarai SelviMcGRAW Hill Publication

4. Miller Michael, "Cloud Computing: Web Based Applications that Change the Way You Work and Collaborate Online", Pearson Education India

5. Velte T., Velte A., Elsenpeter R., "Cloud Computing – A practical Approach", Tata McGrawHill

Course Outcome:

CO-1: To apply differential and integral calculus to improper integrals and to determine applications of definite integral. Apart from some other applications they will have a basic understanding of indeterminate forms, Beta and Gamma functions

CO-2: To apply the various tests of convergence to sequence, series and the tool of power series and Fourier series for learning advanced Engineering Mathematics

CO-3: To compute directional derivative, maximum or minimum rate of change and optimum value of functions of several variables

CO-4: Mathematics has the potential to understand the core Technological studies

CO-5: To compute the areas and volumes using multiple integral techniques

CO-6: To perform matrix computation in a comprehensive manner

Course	Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)											
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	-	-	-	-	-	-	-	-	-	-	-
CO-2	3	-	1	-	-	-	-	-	-	-	-	-
CO-3	3	1	-	-	-	-	-	-	-	-	-	-
CO-4	3	2	3	-	-	-	-	-	-	-	-	-
CO-5	3	2	3	-	-	-	-	-	-	-	-	-
CO-6	3	2	3	-	-	-	-	-	-	-	-	-

(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

FEM135404: SEMANTIC WEB

Objective: The rationale behind such a system is that most of the data currently posted on the web is buried in HTML files suitable for human reading and not for computers to manipulate meaningfully. The semantic Web, an extension of the current web, can be thought of as a globally linked database where information is given well-defined meaning using metadata for better enabling computers and humans to work in close cooperation.

Ci cuiti c

L-T-P: 3-0-0

Sr.	Content	Total Hrs	% Weightage
	Semantic web vision:		
	Todays web, Examples of semantic web from today's web,		
1	Stematic web technologies, layered approach	10	25%
	Structured web documents in ANIL:		
	The XML language, Structuring, Namespaces, Querying and		
	Addressing XML documents, Processing		
	Describing web Resources:		1 = 0 /
2	Introduction, RDF, RDF Schema syntax and language, Direct	07	15%
	Inference System, Querying RQL		
	Web Ontology Language:	. –	4 = 0 (
3	Introduction, OWL language, Examples, OWL in OWL, Future	07	15%
	extensions		
	Logic and Inference: Rules:		
	Introduction, Monotonic Rules syntax, semantics & examples,		
	Nonmonotonic rules – syntax & examples, Encoding in XML		
4	Applications:	15	27%
	Introduction, Horizontal Information Products at Elsevier, Data		
	Integration at Audi, Skill Finding at Swiss Life, Think Tank portal		
	at EnerSearch, e-Learning, Web Services, Other Scenarios		
	Ontology Engineering:		
	Introduction, Manual construction of Ontology, Reusing existing		
5	ontology, using Semi-automatic methods, Knowledge semantic	07	18%
	web architecture		
	Conclusion and Outlook:		
·	TOBALOTA A A A A A A A A A A A A A A A A A A	/	DOBAL UN

Hansaba College of Engineering & Technology

How it fits together?, Issues and future trends

Reference Books:

- 1. A Semantic web Primer: Grigoris Antoniou and Frank Van Hermelen , MIT Press.
- 2. Foundations of Semantic Web Technologies, Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, CRC Press.
- 3. Semantic Web programming, John Hebleret.el, Wiley.

Course Outcome:

CO-1: To apply differential and integral calculus to improper integrals and to determine applications of definite integral. Apart from some other applications they will have a basic understanding of indeterminate forms, Beta and Gamma functions

CO-2: To apply the various tests of convergence to sequence, series and the tool of power series and Fourier series for learning advanced Engineering Mathematics

CO-3: To compute directional derivative, maximum or minimum rate of change and optimum value of functions of several variables

CO-4: Mathematics has the potential to understand the core Technological studies

CO-5: To compute the areas and volumes using multiple integral techniques

CO-6: To perform matrix computation in a comprehensive manner

Course	Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)											
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	1	1	1	1	-	-	-	-	-	-	-	-
CO-2	-	-	3	3	-	-	-	-	-	-	-	2
CO-3	-	-	1	-	3	-	-	-	-	-	-	-
CO-4	2	2	2	2	-	-	-	-	-	-	-	-
CO-5	-	-	1	3	-	-	-	-	-	-	-	-
CO-6	2	2	2	2	3	-	-	-	-	-	-	-

FEM135503: DISSERTATION PHASE-I

Objective: The objectives of research may vary depending on the field of study and the specific research question being investigated.

Credit: 8

L-T-P: 0-0-16

Course Outcome:

- CO-1: To apply differential and integral calculus to improper integrals and to determine applications of definite integral. Apart from some other applications they will have a basic understanding of indeterminate forms, Beta and Gamma functions
- CO-2: To apply the various tests of convergence to sequence, series and the tool of power series and Fourier series for learning advanced Engineering Mathematics
- CO-3: To compute directional derivative, maximum or minimum rate of change and optimum value of functions of several variables
- CO-4: Mathematics has the potential to understand the core Technological studies
- CO-5: To compute the areas and volumes using multiple integral techniques
- CO-6: To perform matrix computation in a comprehensive manner

Course Outcomes	Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)											
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	3	2	-	-	-	-	-	-	-	-	-
CO-2	3	3	3	-	-	-	-	-	-	-	-	3
CO-3	3	3	2	-	-	-	-	-	-	-	2	3
CO-4	3	3	3	-	-	-	-	-	-	-	3	2
CO-5	3	3	2	3	-	-	-	-	-	2	2	3
CO-6	3	3	3	-	-	-	-	-	-	3	3	2

FEM135502: INTERNAL REVIEW - I

Objective: The objectives of research may vary depending on the field of study and the specific research question being investigated.

Credit: 2

L-T-P: 0-0-4

(Recognized by UGC under Section 22 & 2(f) of 1956) (Gujarat Private State University Act 4 of 2018)

FEM145502: DISSERTATION PHASE-II

Objective: The objectives of research may vary depending on the field of study and the specific research question being investigated.

Credit: 14

Semester IV

L-T-P: 0-0-28

Course Outcome:

After learning the course the students should be able to:

CO1: Apply the research methodology tools for data collection and analysis.

CO2 : Perform the related investigation with the help of available software and hardware tools

CO3: Interpret the research outcomes through various statistical tools and validate them.

CO4 : Deduce the relevant/ substantial technical content from the compiled data and compose research publications

CO5: Communicate the research outcomes through an effective report.

Course	Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)											
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO-1	3	3	3	-	-	3	3	3	-	-	-	-
CO-2	3	3	3	-	-	3	3	3	-	1	-	-
CO-3	3	3	3	-	-	3	3	3	-	2	-	-
CO-4	3	3	3	-	-	3	3	3	-	-	1	-
CO-5	3	3	3	-	-	3	3	3	-	-	-	-
CO-6	-	-	-	-	-	-	-	-	-	-	-	-

FEM145501: INTERNAL REVIEW - II

Objective: The objectives of research may vary depending on the field of study and the specific research question being investigated.

Credit: 2

L-T-P: 0-0-4

